翻訳と辞書
Words near each other
・ Logarithmic growth
・ Logarithmic integral function
・ Logarithmic mean
・ Logarithmic mean temperature difference
・ Logarithmic norm
・ Logarithmic number system
・ Logarithmic pair
・ Logarithmic resistor ladder
・ Logarithmic scale
・ Logarithmic Schrödinger equation
・ Logarithmic spiral
・ Logarithmic spiral beaches
・ Logarithmic timeline
・ Logarithmic units
・ Logarithmically concave function
Logarithmically concave measure
・ Logarithmically concave sequence
・ Logarithmically convex function
・ Logarithmically convex set
・ Logarji
・ Logarovci
・ Logarska Dolina
・ Logaršče
・ Logashkino
・ Logatec
・ Logatec Karst Field
・ Logau-Las
・ Logaščica
・ Logba
・ Logba Adzekoe


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Logarithmically concave measure : ウィキペディア英語版
Logarithmically concave measure
In mathematics, a Borel measure ''μ'' on ''n''-dimensional Euclidean space R''n'' is called logarithmically concave (or log-concave for short) if, for any compact subsets ''A'' and ''B'' of R''n'' and 0 < ''λ'' < 1, one has
: \mu(\lambda A + (1-\lambda) B) \geq \mu(A)^\lambda \mu(B)^,
where ''λ'' ''A'' + (1 − ''λ'') ''B'' denotes the Minkowski sum of ''λ'' ''A'' and (1 − ''λ'') ''B''.
==Examples==

The Brunn–Minkowski inequality asserts that the Lebesgue measure is log-concave. The restriction of the Lebesgue measure to any convex set is also log-concave.
By a theorem of Borell, a measure is log-concave if and only if it has a density with respect to the Lebesgue measure on some affine hyperplane, and this density is a logarithmically concave function. Thus, any Gaussian measure is log-concave.
The Prékopa–Leindler inequality shows that a convolution of log-concave measures is log-concave.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Logarithmically concave measure」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.